
WU-BOTS - A ROBOT SIMULATOR FOR STUDENTS *

Bruce Mechtly, Joshua Wurtz and Tyler Wade
Department of Computer Information Sciences

Washburn University
Topeka, KS

bruce.mechtly@washburn.edu

ABSTRACT
We introduce the Java WU-Bots Robotic Simulator as an alternative to using
robots like Scribbler™ and Finch™ in the classroom. Students can easily
design a maze of walls using the environment editor, then program the robots
using ordinary Java code in a simple text editor. Up to 10 robots can be
programmed to run simultaneously. Projects and environments can be saved
and loaded easily. We also present a set of projects to challenge students of
all levels, including an autonomous robot that explores a maze and generates
a graph representation which it can then use to navigate the graph using a
shortest path algorithm.

INTRODUCTION
While there are many robotics simulators available [1], including many that are

open-source [2], we chose to design and implement our own simulator as a student
project. The result is a simple two-dimensional environment where up to 10 robots can
interact with walls and each other. We have also created a three-dimensional
environment using OpenGL, but have not yet fully integrated this feature into our
program.

After using the Scribbler™ robot in the classroom for many years, we were
frustrated with the need to constantly replace batteries. We purchased a set of
rechargeable batteries, but found they would not last through even one class period. Also,
there were often slight imperfections in the speeds of the motors which needed correction.
While not a problem for advanced students, this was too difficult for introductory
students.

* Copyright © 2014 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

119

JCSC 29, 5 (May 2014)

Our goal was to produce a simple Java program that can run on virtually any
computer that reliably simulated the experience a student would have with currently
available classroom robots. The simulator needed to include an environment editor and
a code editor, all integrated for easy use. The program is deployed as a Java executable
jar file and is available here [3]. It includes all source code.

In what follows we will discuss the design and organization of the WU-Bots
program, including the internal design which may be of interest to advanced students
interested in graphics and animation. We then introduce a set of simple student projects
that can be used to challenge students at all levels.

THE SIMULATOR
A screenshot of the simulator is shown in Figure 1. There are three tabs that allow

the user to easily navigate between the different panels. The “Simulator” tab shows the
environment that the robots explore. In this project there are five robots. Robots can
leave “breadcrumbs” and “markers” behind to show their past motion. The “Robot
Control” tab is used to go to the code editor and the “Commands” tab gives a summary
of the method calls the student can use to control the robot.

Note the presence of the “Edit” button on the “Simulator” tab. This is a toggle
button that takes the user to a graphical editor where they can add walls, change the
position of walls, and change the initial position and orientation of the robots.

120

CCSC: Central Plains Conference

Clicking on the “Start” button will compile all active robots (if not already
compiled) and then begin the simulation. When the simulation is running one can pause
and resume it whenever one chooses. Clicking on “Reset” will return the robots to their
initial position. Robots will stall when they hit a wall or another robot due to collision
detection within the simulator. The student can use the sensor to detect an object in front
of the robot to avoid collisions.

Figure 1. The Simulator Tab

121

JCSC 29, 5 (May 2014)

Figure 2 shows the “Robot Control” tab of the simulator. The window on the left
contains the source code and the window on the right contains complier messages. Note
the spinner to select which robot is being edited. The name of the robot can be changed
in the text box. The “Active” checkbox is used to tell the simulator which robots to show
and which to hide.

DESIGN
Many problems needed to be addressed when developing the simulator. A brief list

is below.
 1. How do we compile the student code from within the program?
 2. How do we run the student code within the simulator?
 3. How do we keep the robots synchronized in the simulator?
 4. How do we detect collisions with the walls and other robots?

Figure 2. The Robot Control Tab

122

CCSC: Central Plains Conference

The student code is compiled using the “exec(...)” method of the Runtime class.
One can use this method to execute any OS command from inside a Java program. We
first write the student’s code into a Java source code file (in the current directory where
the simulator was launched). Each Robot is in a file called RobotN.java where N goes
from 0 to 9. Then we issue the “javac” command through the exec method of the
Runtime class. This returns a “Process” object which has an error stream that we use to
capture any error messages to display in the user interface. Note that the Java
development environment must be installed, and the path to the bin directory must be in
the path environment variable.

To solve the second problem, the resulting class file is then loaded with a custom
class loader. Each robotN class extends the Robot class which itself extends Thread. The
method calls to control the robot are defined in the Robot superclass. After each class is
loaded the “start()” method is called causing each robot object to execute as an
independent thread.

The synchronization issue is solved by introducing a new thread whose sole purpose
is to monitor the array of robot threads making sure that each one has completed its
current step. When a robot object calls one of the robot methods (such as forward(1.0))
that command is broken down into a set of 20 millisecond steps which are then processed
in a for loop. After each iteration of the loop a condition variable is set to indicate that
this particular robot thread has updated its position. Each robot then calls the “wait()”
method. After all threads have updated the synchronization thread will check the system
clock and when the next 20 ms interval arrives it updates the user interface, resets all
condition variables and calls the “notifyAll()” method. The robot threads thus run
lock-step at exactly 20 millisecond intervals.

The fourth problem is solved by creating a candidate position for each robot and
checking to see if that candidate position violates any collision criteria. If there is a
violation the current position is not updated. Otherwise the candidate position becomes
the new current position. For robot-robot collisions it is simply a matter of checking to
see if the centers are at least two robot radii apart. For walls it is more complex. Vector
analysis is used to find the intersection point from a forward-facing vector at each wheel
and every wall. If an intersection is found, the distance to that point must be greater than
a robot radius if the new position is to be allowed.

STUDENT PROJECTS
The simulator can be used for student projects at all levels, from the first

introductory course to advanced courses on computational intelligence. In what follows
we list ideas that we hope will challenge students at various skill levels.

Simple Project 1: Make the robot follow a square path in an environment with no walls.
Have them then change the code to make the square larger, or follow a rectangular path.
Have them drop breadcrumbs as the robot moves to show its path.

123

JCSC 29, 5 (May 2014)

Simple Project 2: Make the robot follow a circular path, dropping breadcrumbs as it
moves. Ask the student to make the circle larger or smaller. Have them change it to
make a half circle. A figure 8.

Simple Project 3: Add walls to the environment. Make the robot walk a straight line
until it comes up to a wall, then turn right (loop back here). They can use the “sensor()”
or the “stalled()” methods or both. Then ask students to have the robot randomly turn
right or left when it hits a wall.

Simple Project 4: Using a predefined maze, have the student write code so the robot
(mouse) can move from a starting location to an ending location (cheese) in the maze.
Perhaps have a contest to see which robot can move through the maze in the least time
(the clever student will use diagonal paths when they can).

Intermediate Project 1: Make the robot trace a complex path in the environment such
as tracing a triangle or spelling out a word with breadcrumbs.

Intermediate Project 2: Make the robot find a path through a simple maze by always
turning the same direction. In human terms this is equivalent to always keeping the right
or left hand on a wall. Show the student that this won’t work with more complex mazes.

Intermediate Project 3: Starting with a random walk (Simple Project 3) have the robot
calculate its position by tallying its forward or backward motion and angle. The robot
should be able to reliably determine its position after any number of moves.

Intermediate Project 4: Have the robot store its moves in an ArrayList so that it can
retrace its steps after some complex (perhaps random) sequence of steps.

Advanced Project 1: Have the robot walk through a maze and create a “node” every time
it hits a wall. The nodes are then stored in an ArrayList that represents a graph of the
maze. Make the robot drop a unique marker at each node. Over time the entire maze
should be explored (except for regions unreachable by this method).

Advanced Project 2: Have the robot walk through a maze creating nodes at every change
of direction. Have the robot keep track of what directions have been explored for each
node, and return to all unexplored directions from each node at some later time. This can
be done in a depth-first or breadth-first manner.

Advanced Project 3: Make the robot in Advanced Project 2 write a file with the graph
of the maze in it. Make another project where a robot can load the graph.

124

CCSC: Central Plains Conference

Advanced Project 4: After the robot can load a graph of a maze, have the robot follow
a shortest path algorithm to move from one node to any other node in the graph.

A project file illustrating some of the advanced projects can be found here [4]. The
robot explores the environment creating nodes every time it turns. It also looks for
co-linear nodes and reconnects the graph incorporating them. It then finds intersections
of edges and adds nodes there. It prompts the user to enter a node and travels to that
node using a shortest path algorithm. A screenshot of this project is shown in Figure 3.

CONCLUSION
The WU-Bots simulator was designed and implemented over several semesters with

the help of several students. The result is an easy-to-use, executable Java jar file that will
run on any computer that has the Java development environment installed. It provides
an easy way to introduce the topic of robot programming at the introductory level, but
also provides programming challenges to advanced students.

REFERENCES

[1] Follow this link for a summary of robot simulators available:
http://en.wikipedia.org/wiki/Robotics_simulator

Figure 3. The Search Project

125

JCSC 29, 5 (May 2014)

[2] http://en.wikipedia.org/wiki/Robotics_simulator#Open_source_simulators

[3] http://cislinux2.washburn.edu/wubots/WU-Bots.jar

[4] http://cislinux2.washburn.edu/wubots/search.zip. The Node and Path classes
must be placed in the directory where the simulator is launched. They cannot be
included in the robot code as private nested classes.

126

